Книжный каталог

Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва

Перейти в магазин

Сравнить цены

Описание

В книге подробно описаны все заметные открытия и сопутствующие им исторические обстоятельства по всем разделам классической и современной физики. Много внимания уделено изложению основ специальной теории относительности, квантовой механики, современной теории гравитации. Для чтения ряда разделов книги требуется знание основ дифференциального и интегрального исчисления. Для любознательных школьников и студентов, руководителей физических кружков, а также для всех тех, кто хочет пополнить свои знания в одной из самых важных и увлекательных наук в процессе интересного и познавательного чтения.

Сравнить Цены

Предложения интернет-магазинов
Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва 1088 р. bookvoed.ru В магазин >>
В.С. Кессельман Вся физика в одной книге В.С. Кессельман Вся физика в одной книге 1028 р. ozon.ru В магазин >>
В. С. Кессельман Вся астрономия в одной книге В. С. Кессельман Вся астрономия в одной книге 949 р. ozon.ru В магазин >>
Кессельман В.С. Вся астрономия в одной книге: книга для чтения по астрономии Кессельман В.С. Вся астрономия в одной книге: книга для чтения по астрономии 1003 р. bookvoed.ru В магазин >>
Кессельман В. Физика в инфографике. От гномона до кванта Кессельман В. Физика в инфографике. От гномона до кванта 704 р. chitai-gorod.ru В магазин >>
Пиковер К. Великая физика. От Большого взрыва до Квантового воскрешения. 250 основных вех в истории физики Пиковер К. Великая физика. От Большого взрыва до Квантового воскрешения. 250 основных вех в истории физики 2219 р. chitai-gorod.ru В магазин >>
Кессельман В.С. Физика в инфографике. От гномона до кванта Кессельман В.С. Физика в инфографике. От гномона до кванта 578 р. book24.ru В магазин >>

Статьи, обзоры книги, новости

Электронно-библиотечная система IPRbooks

Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва
  • .
  • Естественные науки
  • 22 Физико-математические науки
  • 22.3 Физика

Чтение online Вся физика в одной книге. От плоской Земли до Большого взрыва Библиографическая запись Об издании Рекомендуем

Автор: Мигель де Унамуно

Год издания: 2009

Автор: Барабанщиков Ю.

Год издания: 2010

Издательство: Наука и Техника

Автор: Германович В., Турилин А.

Год издания: 2014

Издательство: Наука и Техника

Автор: Германович В., Турилин А.

Год издания: 2011

Издательство: Московский государственный технический университет имени Н.Э. Баумана

Автор: Гуськов А.М., Яресько С.В.

Год издания: 2013

Издательство: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ

Год издания: 2016

С этой книгой также читают

Автор: Перхуткин В.П., Перхуткина З.И., Овчарук Т.А., Недух Е.Н., Панюкова М.Л.

Год издания: 2006

Просмотр оглавления издания

Бесплатная горячая линия

8 800 555 22 35

е-mail: sale@iprmedia.ru, adm@iprmedia.ru

Доступ к фондам ЭБС IPRbooks предоставляется круглосуточно.

410012, г. Саратов, ул. Вавилова, 38/114, офисы 425, 428, 1019

Тел./факс: 8 (8452) 24-77-97, 24-77-96

Мы в социальных сетях:

Отдел комплектования ЭБС IPRbooks:

Отдел продаж и внедрения ЭБС IPRbooks:

доб. 206, 213, 144, 145

Установка кнопки на ваш сайт:

Инструкция по установке кнопок электронно-библиотечной системы «IPRbooks»

Для установки одной из кнопок ЭБС «IPRbooks» на свой сайт, скопируйте код из соответствующего поля и поместите его в необходимом месте на вашем сайте.

© ЭБС IPRbooks, ООО «Ай Пи Эр Медиа», электронное периодическое издание «www.iprbookshop.ru» 16+

Эл. №ФС77-43102 от 20.12.2010 / ISSN 2227-8397

Источник:

www.iprbookshop.ru

Глава одиннадцатая

Ogrik2.ru Краткая история времени. От Большого Взрыва до черных дыр Глава одиннадцатая

Мы живем в удивительном мире. Нам хочется понять то, что мы видим вокруг, и спросить: каково происхождение Вселенной? какое место в ней занимаем мы и вообще откуда все это взялось? почему все происходит именно так, а не иначе?

Для ответа на эти вопросы мы принимаем некую картину мира. Такой картиной может быть как башня из стоящих друг на друге черепах, несущих на себе плоскую Землю, так и теория суперструн. Обе они являются теориями Вселенной, но вторая значительно математичнее и точнее первой. Ни одна из этих теорий не подтверждена наблюдениями: никто никогда не видел гигантскую черепаху с нашей Землей на спине, но ведь и суперструну никто никогда не видел. Однако модель черепах нельзя назвать хорошей научной теорией, потому что она предсказывает возможность выпадения людей через край мира. Такая возможность не подтверждена экспериментально, разве что она окажется причиной предполагаемого исчезновения людей в Бермудском треугольнике!

Самые первые попытки описания и объяснения Вселенной были основаны на представлении, что событиями и явлениями природы управляют духи, наделенные человеческими эмоциями, действующие совершенно как люди, но абсолютно непредсказуемо. Эти духи населяли такие природные объекты, как реки, горы и небесные тела, например Солнце и Луну. Полагалось задабривать их и добиваться их расположения, чтобы обеспечить плодородие почвы и смену времен года. Но постепенно люди должны были подметить определенные закономерности: Солнце всегда вставало на востоке и садилось на западе независимо от того, была или не была принесена жертва богу Солнца. Солнце, Луна и планеты ходили по небу по совершенно определенным путям, которые можно было предсказать с хорошей точностью. Солнце и Луна, конечно, могли оказаться богами, но богами, которые подчиняются строгим, по-видимому не допускающим исключений законам – если все же отвлечься от вымыслов вроде легенды о том, как ради Иисуса Навина остановилось Солнце.

Сначала закономерности и законы были обнаружены только в астрономии и еще в считаных случаях. Но по мере развития цивилизации, и особенно за последние триста лет, открывались все новые и новые закономерности и законы. Успешное применение этих законов в начале XIX в. привело Лапласа к доктрине научного детерминизма. Ее суть в том, что должна существовать система законов, точно определяющих, как будет развиваться Вселенная, по ее состоянию в один какой-нибудь момент времени.

Лапласовский детерминизм был неполным по двум причинам. В нем ничего не говорилось о том, как следует выбирать законы, и никак не определялось начальное состояние Вселенной. И то и другое предоставлялось решать Богу. Бог должен был решить, каким быть началу Вселенной и каким законам ей подчиняться, но с возникновением Вселенной его вмешательство прекратилось. Практически Богу были оставлены лишь те области, которые были непонятны науке XIX в.

Сейчас мы знаем, что мечты Лапласа о детерминизме нереальны, по крайней мере в том виде, как это понимал Лаплас. В силу квантово-механического принципа неопределенности некоторые пары величин, например положение частицы и ее скорость, нельзя абсолютно точно предсказать одновременно.

Квантовая механика в подобных ситуациях обращается к целому классу квантовых теорий, в которых частицы не имеют точно определенных положений и скоростей, а представляются в виде волн. Такие квантовые теории являются детерминистскими в том смысле, что они указывают закон изменения волн со временем. Поэтому, зная характеристики волны в один момент времени, мы можем рассчитать, какими они станут в любой другой момент времени. Элемент непредсказуемости и случайности возникает лишь при попытках интерпретации волны на основе представлений о положении и скорости частиц. Но в этом-то, возможно, и заключается наша ошибка: может быть, нет ни положений, ни скоростей частиц, а существуют одни только волны. И ошибка именно в том, что мы пытаемся втиснуть понятие волны в наши заскорузлые представления о положениях и скоростях, а возникающее несоответствие и есть причина кажущейся непредсказуемости.

И вот мы поставили иную задачу перед наукой: найти законы, которые позволяли бы предсказывать события с точностью, допускаемой принципом неопределенности. Однако все равно остается без ответа вопрос: как и почему производился выбор законов и начального состояния Вселенной?

В этой книге я особо выделил законы, которым подчиняется гравитация, потому что, хотя гравитационные силы самые слабые из существующих четырех типов сил, именно под действием гравитации формируется крупномасштабная структура Вселенной. Законы гравитации были несовместимы с еще недавно бытовавшей точкой зрения, что Вселенная не изменяется со временем: из того, что гравитационные силы всегда являются силами притяжения, вытекает, что Вселенная должна либо расширяться, либо сжиматься. Согласно общей теории относительности, в прошлом должно было существовать состояние с бесконечной плотностью – Большой Взрыв, который и стал началом отсчета времени. Аналогичным образом, если вся Вселенная испытает повторный коллапс, то в будущем должно обнаружиться еще одно состояние с бесконечной плотностью – Большое Схлопывание, которое станет концом течения времени. Даже если вторичный коллапс Вселенной не произойдет, во всех локализованных областях, из которых в результате коллапса образовались черные дыры, все равно возникнут сингулярности. Эти сингулярности будут концом времени для любого, кто упадет в черную дыру. В точке Большого Взрыва и в других сингулярностях нарушаются все законы, а поэтому за Богом сохраняется полная свобода в выборе того, что происходило в сингулярностях и каким было начало Вселенной.

При объединении квантовой механики с общей теорией относительности возникает, по-видимому, новая, доселе неизвестная возможность: пространство и время могут вместе образовать конечное четырехмерное пространство, не имеющее сингулярностей и границ и напоминающее поверхность Земли, но с бо?льшим числом измерений. С помощью такого подхода удалось бы, наверное, объяснить многие из наблюдаемых свойств Вселенной, например ее однородность в больших масштабах и одновременно отклонения от однородности, наблюдаемые в меньших масштабах, такие как галактики, звезды и даже человеческие существа. С помощью этого подхода можно было бы объяснить даже существование наблюдаемой нами стрелы времени. Но если Вселенная полностью замкнута и не имеет ни сингулярностей, ни границ, то отсюда вытекают очень серьезные выводы о роли Бога как Создателя.

Однажды Эйнштейн задал вопрос: «Какой выбор был у Бога, когда он создавал Вселенную?» Если верно предположение об отсутствии границ, то у Бога вообще не было никакой свободы выбора начальных условий. Разумеется, у него еще оставалась свобода выбора законов, которым подчиняется Вселенная. Но их на самом деле не так уж много; существует, возможно, всего одна или несколько полных единых теорий, например теория гетеротической струны, которые были бы непротиворечивы и допускали существование таких сложных структур, как человеческие существа, способные исследовать законы Вселенной и задавать вопросы о сущности Бога.

Даже если возможна всего одна единая теория – это просто набор правил и уравнений. Но что вдыхает жизнь в эти уравнения и создает Вселенную, которую они могли бы описывать? Обычный путь науки – построение математической модели – не может привести к ответу на вопрос о том, почему должна существовать Вселенная, которую будет описывать построенная модель. Почему Вселенная идет на все хлопоты существования? Неужели единая теория так всесильна, что сама является причиной своей реализации? Или ей нужен Создатель, а если нужен, то оказывает ли он еще какое-нибудь воздействие на Вселенную? И кто создал его?

Пока большинство ученых слишком заняты развитием новых теорий, описывающих, что есть Вселенная, и им некогда спросить себя, почему она есть. Философы же, чья работа в том и состоит, чтобы задавать вопрос «почему», не могут угнаться за развитием научных теорий. В XVIII в. философы считали все человеческое знание, в том числе и науку, полем своей деятельности и занимались обсуждением вопросов типа: было ли у Вселенной начало? Но расчеты и математический аппарат науки XIX и XX веков стали слишком сложны для философов и вообще для всех, кроме специалистов. Философы настолько сузили круг своих запросов, что самый известный философ XX века Витгенштейн по этому поводу сказал: «Единственное, что еще остается философии, – это анализ языка». Какое унижение для философии, с ее великими традициями от Аристотеля до Канта!

Но если мы действительно откроем полную теорию, то со временем ее основные принципы станут доступны пониманию каждого, а не только нескольким специалистам. И тогда все мы – философы, ученые и просто обычные люди – сможем принять участие в дискуссии о том, почему так произошло, что существуем мы и существует Вселенная. И если будет найден ответ на такой вопрос, это будет полным триумфом человеческого разума, ибо тогда нам станет понятен замысел Бога.

Источник:

ogrik2.ru

Вселенная извергается: природа Большого взрыва

Отрывок из книги Ричарда Мюллера «Сейчас. Физика времени»

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает читателям сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени. Indicator.Ru публикует отрывок из книги Мюллера «Сейчас. Физика времени» издательства «Манн, Иванов и Фербер».

Из небольшой искры возгорается величественное пламя.

Это сигнал из первоздания.

Далеко позади что-то бормочут микроволны,

Испущенные первовеществом «илемом» в давнем прошлом

При трех градусах по Кельвину.

Они неразличимы в свете звезд.

Замечательный результат модели Вселенной Леметра: она создает возможность обернуться назад во времени — назад, еще назад и еще. Я заглянул в прошлое на 14 миллиардов лет.

Вы обращаетесь в прошлое все время. Когда смотрите на человека, стоящего от вас в полутора метрах, видите его не сиюминутного: вы видите, каким он был 5 миллиардных долей секунды назад (столько надо свету, чтобы пролететь это расстояние). Поднимая взор на Луну, видите ее тоже не той, какая она сейчас, а какой была 1,3 секунды назад. Когда щуритесь на Солнце, видите, в каком оно было состоянии 8,3 минуты назад. Если Солнце вдруг взорвалось семь минут назад, то пока мы не имеем об этом ни малейшего представления.

Наиболее отдаленные и древние сигналы из космоса, которые удалось уловить, — космическое микроволновое (реликтовое) излучение. Это так называемые первичные сигналы. Мы верим, что они начали свое путешествие 14 миллиардов лет назад. И когда смотрим на них (с помощью микроволновой камеры), видим Вселенную того времени. Свет (микроволны — это низкочастотный свет) показывает, чтo существовало во Вселенной огромное время назад и на огромном удалении от нас. Этот свет путешествовал в космосе целых 14 миллиардов лет, чтобы достичь нас.

Чтобы заглянуть назад во времени, мы должны исходить из того, что отдаленная от нас на расстояние 14 миллиардов световых лет Вселенная была очень похожа на то, какой была тогда и ближайшая к нам ее часть. Как я уже говорил, этот постулат имеет свое название: космологический принцип. Согласно ему, Вселенная по своей природе гомогенна (как гомогенизированное молоко, с ровным составом по всему объему без сколько-нибудь заметных сгустков) и изотропна (нет направлений с особыми физическими свойствами, в ней отсутствует движение больших масштабов; например, Вселенная не вращается). Если не хотите, чтобы окружающие поняли вашу приверженность такому радикальному представлению, называйте его принципом. Космологический принцип звучит угрожающе. Но если бы вы назвали его моделью булки с изюмом, он не был бы таким убедительным. Совершенный космологический принцип еще более угрожающ. Он был придуман как расширение «обычного», но оказался ложным. Далее я это объясню.

Имеется достаточно доказательств того, что космологический принцип, в общем, верен — во всяком случае, для наших целей. Когда мы изучаем Вселенную, особенно ближнюю ее часть, то видим, что она очень походит на все происходящее в непосредственной близости от нас. Мы находимся в галактике Млечный Путь (все звезды на небе, которые вы можете видеть невооруженным глазом, входят в сгусток из многих сотен миллиардов звезд). Однако, скорее всего, за ее пределами существует огромное множество подобных галактик, которые уходят все дальше и дальше в космическое пространство. Выберите небольшой участок неба и, используя лучшие телескопы, попытайтесь сосчитать видимые галактики и экстраполировать результаты на те районы Вселенной, которые пока остаются неизученными. Таким образом можно прийти к выводу, что видимых галактик свыше сотни миллиардов. В большинстве из них звезд меньше, чем в нашем Млечном Пути.

Хотя во Вселенной имеется много сгустков галактик, они распределены в космическом пространстве повсюду, причем с примерно одинаковой плотностью. Мы с командой университета Беркли в 1970-е годы измеряли микроволновое излучение, приходящее из космоса, и выяснили, что Вселенная демонстрирует однородность с погрешностью в 0,1%, если рассматривать ее в очень больших масштабах. Недавние измерения спутника WMAP (Wilkinson Microwave Anisotropy Probe) показали с точностью до 0,01%, что Вселенная однородна. Однако можно предполагать, что с повышением точности измерений ее неоднородность все-таки удастся уловить.

Огненный шар Большого взрыва

Самым убедительным доказательством Большого взрыва стало обнаружение реликтового (остаточного) микроволнового излучения. Если бы оно не было найдено, Большой взрыв назвали бы большой фальшивкой и связанную с ним теорию признали бы глубоко ошибочной. Ученые из Принстонского университета Роберт Дикке и Джеймс Пиблс начали активно изучать концепцию Большого взрыва в начале 1960-х годов. При условии, что гипотеза верна, микроволны должны быть доступны для наблюдения. Если физикам удастся обнаружить их, это открытие станет одним из величайших в ХХ веке, сравнимым с чудом открытия Хабблом расширения Вселенной. Ученые собрали команду, в которую, кроме них, вошли Дэйв Уилкинсон и Питер Ролл, и приступили к конструированию устройства, способного найти нужное доказательство.

Гипотеза ученых была достаточно простой — насколько может быть простой космологическая идея, основанная на теории относительности. Это было развитие первоначального тезиса о Большом взрыве, сформулированного Георгием Гамовым и Ральфом Алфером. В первичной Вселенной, когда космическое пространство было сжато в 30 триллионов раз плотнее, чем сейчас, наполнявшее его вещество (то, что мы видим сегодня в звездах и галактиках) было чрезвычайно плотным и горячим. Вся Вселенная была заполнена плазмой, такой же свирепой, как и та, что находится на поверхности Солнца. Она испускала очень интенсивный свет. Гамов и Алфер называли эту горячую протоплазму «илем».

Гамов утверждал, что на идише это слово означает «бульон». Однако я не нашел его в словаре идиша. Возможно, это какой-то диалект. Алфер писал, что это было давно забытое слово, которое можно было найти в толковом словаре Webster’s New International Dictionary и которое означает «первичную субстанцию, из которой были сформированы все вещи». Я не нашел «илем» в Webster’s Revised Unabridged Dictionary изданий 1828 и 1913 годов. Толковый словарь английского языка Oxford English Dictionary дает одну ссылку на поэму знаменитого средневекового английского философа и поэта Джона Гауэра Confession Amantis («Исповедь влюбленного»), III.91, в которой на средневековом английском сказано: «Всеобщая материя, которая называется "Илем", весьма особенная».

Возможно, это Гамов и Алфер превратили слово «илем» в новый термин, но известно, что названия «Большой взрыв» они не придумывали. Его автором стал Фред Хойл, видный астроном, который не верил в эту теорию и обозвал ее так, чтобы посмеяться. Видимо, к разочарованию Хойла, Гамов быстро подхватил это название и применил. Еще одним примером чувства юмора Гамова стало то, что при написании в соавторстве с Алфером крупной статьи о Большом взрыве он включил в число ее авторов известного физика Ганса Бете, хотя последний в подготовке статьи не участвовал, не давал разрешения на использование своего имени и даже не подозревал, что он соавтор, пока статья не была опубликована. Позднее Гамов объяснял это шуткой — не смог избежать соблазна назвать авторами статьи Алфера, Бете и Гамова, поскольку эта комбинация так напоминала три первые буквы греческого алфавита: альфу, бету и гамму. Эту работу до сих пор иногда упоминают по буквам: «Статья ???».

Гамов был известным популяризатором науки. Оглядываясь назад по мере написания этой работы, я вдруг понял, что его книга «Один, два, три… бесконечность», которую я читал еще подростком, в определенной степени воодушевила меня на написание «Сейчас». Я читал также и книгу Фреда Хойла Frontiers of Astronomy («Границы астрономии»), в которой автор отстаивал свою теорию «стабильного состояния», предложенную в качестве альтернативы Большому взрыву. Хойл утверждал, что расширение Вселенной — иллюзия, материя постоянно создается и разрушается, и Вселенная не меняется. (Будучи еще ребенком, я, конечно, не имел собственного мнения относительно того, кто из них прав).

Хойл разработал концепцию, которую он называл совершенным (идеальным) космологическим принципом, утверждавшим, что Вселенная не только однородна в пространстве, но и не меняется с течением времени. Теперь в ретроспективе я нахожу особенно интересным то, что для обоснования своей теории Хойл привлек методологический принцип бритвы Оккама, согласно которому простейшая идея и есть самая правильная (или что из всех возможных объяснений наиболее вероятно самое простое). Хойл использовал бритву Оккама, чтобы доказать: его гипотеза лучше теории Большого взрыва. Один важный урок, который мы можем вынести из этой истории: будьте осторожнее с научными принципами. Часто это лишь предположения, не всегда основывающиеся на фактах. Другой урок состоит в том, что соблюдение бритвы Оккама не всегда ведет к истине.

Когда Алфер и Гамов впервые предложили теорию Большого взрыва, еще не было возможности ни подтвердить, ни опровергнуть ее. Но Дикке и его команда нашли решение этой проблемы. По их вычислениям, через полмиллиона лет после Большого взрыва наступил ключевой момент: расширяющееся космическое пространство охладилось до такой степени, что плазма стала прозрачной. Тогда исключительно интенсивный свет, подобный свету Солнца, смог свободно проникнуть в пространство и начал в нем распространяться. Именно этот свет от праисторического огненного шара и хотели обнаружить ученые из Принстона. Они ожидали, что свет может исходить с разных направлений, потому что Большой взрыв был полностью однородным — в соответствии с космологическим принципом. Свет должен был пройти дистанцию в 14 миллиардов световых лет, достигнув нас через 14 миллиардов лет.

Вокруг нашего нынешнего места во Вселенной 14 миллиардов лет назад вещество тоже было сильно разогретым и светящимся, и этот свет уходил от нас в окружающее космическое пространство. Как раз примерно сейчас наш свет достигает самой отдаленной материи, свет которой, наоборот, достигает нас.

В связи с быстрым расширением Вселенной яркое свечение, испущенное так давно, претерпело цветовое смещение. Его источник, та самая далекая горячая материя, стремительно удалялся от нас, а ее свет претерпел допплеровское смещение (по нему радары, работающие на основе эффекта Допплера, определяют скорость вашего движения). В нашей системе отсчета это излучение должно иметь не частоту видимого света, а частоту микроволн, подобных тем, что генерируются в вашей микроволновке, только гораздо более слабых.

Когда Дикке, Пиблс, Ролл и Уилкинсон готовили аппаратуру для поисков первичного сигнала, двое исследователей из научно-технической лаборатории корпорации Bell Telephone Арно Пензиас и Роберт Уилсон направили на космос огромную и очень чувствительную антенну, способную улавливать слабейшие микроволны. Их целью было не обнаружение следов Большого взрыва. Наоборот, они ожидали, что не уловят никакого сигнала. Этим ученые хотели доказать, что все поступающее в их приемник — всего лишь собственный электронный шум их аппаратуры. Цель специалистов Bell Telephone состояла в минимизации этого шума.

Пензиас и Уилсон достигли на своем устройстве минимального уровня шума, равнявшегося 3 градусам по Кельвину (они измеряли шум по повышению температуры), но не смогли избавиться от него окончательно. Независимо от того, в какую точку небосвода они направляли свою антенну, аппаратура все равно показывала шум, соответствующий трем градусам по Кельвину. Исследователи пришли к заключению, что этот шум представляет собой некий сигнал, идущий из космоса. Однако они не имели ни малейшего представления о его природе, происхождении, причинах и т. д.

Действительно, казалось абсурдным, что до Земли доходит сигнал из космоса, однородный по всем направлениям. Во всяком случае, так казалось в то время. Нужно отдать должное Пензиасу и Уилсону: чтобы прийти к настолько невероятному заключению, они продемонстрировали непоколебимую уверенность в своей аппаратуре. Наверное, любые другие экспериментаторы, обнаружившие однородное и равнонаправленное излучение, должны были прийти к выводу, что оно исходит от их устройства.

Пока команда Принстонского университета готовила оборудование, Пиблс публично огласил ее предсказания. Одним из тех, кто слышал его лекцию, был Кен Тернер, который рассказал об этом Бернарду Бурке, а тот, в свою очередь, Арно Пензиасу. Последний позвонил Дикке. Его команда находилась в комнате по время этого разговора. «Нас обошли», — сказал Дикке коллегам.

Когда Пензиас и Уилсон опубликовали статью с отчетом об эксперименте, они никак не упомянули вопрос о Большом взрыве. Их статья имела совершенно нейтральное название: A Measurement of Excess Antenna Temperature at 4080 Mc/s [megacycles per second] («Измерения дополнительной температуры антенны при 4080 мегациклах в секунду»). Исследователи просто написали: «Возможным толкованием для дополнительной температуры шума может быть объяснение, данное Дикке, Пиблсом, Роллом и Уилкинсоном в их совместной статье от 1965 года». Однако всего через год микроволновое излучение было признано определенным свидетельством того, что Вселенная произошла в результате взрыва. Таким образом, предвидение оправдалось. Были найдены следы Большого взрыва.

В связи с лекцией, прочитанной Пиблсом, и тем, что благодаря ей научная суть теории Большого взрыва достигла ушей Пензиаса, открытие микроволнового излучения было сделано Пензиасом и Уилсоном, а не принстонской командой, которая подтвердила его существование только спустя несколько месяцев. За свою работу Пензиас и Уилсон поделили Нобелевскую премию. Ученые из Принстона этой чести не удостоились, хотя снискали уважение коллег (в частности, мое). Награду следовало бы поделить между Пензиасом, Уилсоном, Дикке и Пиблсом, но статут Нобелевской премии запрещает ее присвоение более чем трем номинантам.

Источник:

indicator.ru

Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва в городе Липецк

В данном интернет каталоге вы всегда сможете найти Кессельман В.С. Вся физика в одной книге: от плоской Земли до Большого взрыва по доступной цене, сравнить цены, а также изучить другие предложения в категории Наука и образование. Ознакомиться с свойствами, ценами и обзорами товара. Транспортировка может производится в любой населённый пункт РФ, например: Липецк, Оренбург, Волгоград.